Stochastic Burgers Equation with Random Initial Velocities: A Malliavin Calculus Approach
نویسندگان
چکیده
Abstract. In this article we prove an existence theorem for solutions of the stochastic Burgers equation (SBE) on the unit interval with Dirichlet boundary conditions and anticipating initial velocities. The SBE is driven by affine (additive + linear) noise. In order to establish the existence theorem, we adopt a somewhat counterintuitive perspective in which stochastic dynamical systems ideas lead to the existence of solutions rather than vice versa. More specifically, our approach uses the Malliavin calculus and is based on the existence and regularity of a perfect cocycle on the energy space for the SBE. The proof of the existence theorem requires Malliavin regularity of the infinitedimensional initial velocity field together with new spatial estimates on the cocycle, its Fréchet and Malliavin derivatives. The existence theorem provides a dynamic characterization of solutions of the nonanticipating SBE on its unstable invariant manifolds. Furthermore, as a corollary of the existence theorem, we show that random cocycle-invariant points on the energy space correspond to (possibly nonergodic) stationary pathwise solutions for the SBE.
منابع مشابه
Adaptive Wick-Malliavin Approximation to Nonlinear SPDEs with Discrete Random Variables
We propose an adaptive Wick–Malliavin (WM) expansion in terms of the Malliavin derivative of order Q to simplify the propagator of general polynomial chaos (gPC) of order P (a system of deterministic equations for the coefficients of gPC) and to control the error growth with respect to time. Specifically, we demonstrate the effectiveness of the WM method by solving a stochastic reaction equatio...
متن کاملWeak approximations. A Malliavin calculus approach
We introduce a variation of the proof for weak approximations that is suitable for studying the densities of stochastic processes which are evaluations of the flow generated by a stochastic differential equation on a random variable that may be anticipating. Our main assumption is that the process and the initial random variable have to be smooth in the Malliavin sense. Furthermore, if the inve...
متن کاملOnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions
This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...
متن کاملMalliavin Calculus for Backward Stochastic Differential Equations and Application to Numerical Solutions
In this paper we study backward stochastic differential equations with general terminal value and general random generator. In particular, we do not require the terminal value be given by a forward diffusion equation. The randomness of the generator does not need to be from a forward equation, either. Motivated from applications to numerical simulations, first we obtain the Lp-Hölder continuity...
متن کاملStochastic Heat Equation with Infinite Dimensional Fractional Noise: L2-theory
In this article we consider the stochastic heat equation in [0, T ]× Rd, driven by a sequence (β)k of i.i.d. fractional Brownian motions of index H > 1/2 and random multiplication functions (g)k. The stochastic integrals are of Hitsuda-Skorohod type and the solution is interpreted in the weak sense. Using Malliavin calculus techniques, we prove the existence and uniqueness of the solution in a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2013